电能知识|电能质量扰动波形的识别

   更新日期:2017-03-26     来源:建材之家    作者:安防之家    浏览:30    评论:0    
核心提示:电能质量扰动波形的识别  蒋国旗,廖帅戈 (武汉大学电气工程学院,湖北武汉430072) 摘要:利用最近在小波变换、人工神经网络和证据理论上取得的进展来进行电能质量扰动波形的识别。与以往在时域用单个神经网络进行识别不同,提出的方案是在小波域用一组多层神经网络来进行的。最后,用Dempster-Shafer证据理论综合了网络的输出,并由分类器提供已辨识的扰动波形的信任度。关键词:电能质量;

电力检修|处理小电流接地故障的新思路

推荐简介:摘要:基于目前日趋完善的小电流接地选线技术和智能化的综合自动化系统及馈线自动化技术,提出全新的处理接地故障的新思路。阐述了利用馈线自动化技术隔离故障的过程,并表述了该新方法的实用意义。 中低压配电系统的中性点,一般采用不接地或经消弧线圈接地方式,称为小电流接地系统。该系统中发生单相接地故障时,尽管故障分量不大,但由于其他两相对地电压升为线电压,在没有消弧线圈的情况下,如果发......
安防之家讯:cript>电能质量扰动波形的识别蒋国旗,廖帅戈 (武汉大学电气工程学院,湖北武汉430072) 利用最近在小波变换、人工神经网络和证据理论上取得的进展来进行电能质量扰动波形的识别。与以往在时域用单个神经网络进行识别不同,提出的方案是在小波域用一组多层神经网络来进行的。最后,用Dempster-Shafer证据理论综合了网络的输出,并由分类器提供已辨识的扰动波形的信任度。关键词:电能质量;小波变换;模式识别;神经网络;学习矢量量化;证据理论目前提高和保证电能质量已经为成为世界上许多国家包括我国在内日益重视的问题。为了改进电能质量,电力部门需对电能质量进行连续的监测,并利用电能监测设备连续记录扰动波形。现有的分析辨识电能扰动波形的方法由于其基本方法是基于对扰动波形的波形记录,因此,需要观察记录大量的数据,这使得这一工作显得十分繁重。电能质量扰动波形的识别实质上是一个模式识别问题。由于电能质量扰动识别包含了许多的扰动种类,扰动的特征边缘可能重叠,使其实现很困难。利用近来信号分析技术成果,尤其是小波变换,人工神经网络和证据数学理论,在小波域用一组多层人工神经网络来进行辨识,并用投票框架或D-S证据理论综合网络输出,从而解决电能扰动波形的自动辨识。 1电能质量扰动特征的检测和提取小波分析(WaveletAnalysis)是近年来发展起来的一种数学分析方法,被认为是继傅立叶变换以来的又一重大理论突破。小波变换具有良好的时域和频域局部化性质,可以在时域(频域)根据信号的不同频率成分自动调节取样疏密,以分析信号的任意细节,提取信号的特征。由于小波变换对非正常信号很敏感,而对近似正常的信号不敏感,所以它对检测和抽取不同的电能质量扰动特征是很有用的。与50Hz的背景信号相比,扰动事件中的波形是不规则的,因此,有扰动的小波变换系数与没有扰动的值相比其值很大。然而由于所有的实际电能质量信号中都含噪声,检测结果或扰动特征可能变坏,为了提高与扰动有关的系数值而压低与噪声有关的系数值,将所有的小波变换系数值平方,通过这种方法,小波变换就可以抽取扰动信息。小波变换对信号的响应与下式有关:n=0,1,2,…,N-1注意N至少等于1。用泰勒级数,输入信号X(t)的小波变换为: 注意上式中的m从一开始,由于泰勒级数的系数组成一个单调序列,因此等式2可以近似为:从以上可以看出小波变换是以同步时间和尺度信息的形式检测,提取电能质量扰动特征。2模式识别神经网络具有很好的自学功能和自适应能力,当给其提供一系列样本时,它可以依靠其经验来识别模式。一个神经元的输入列向量X=[x(1),…,x(p)]T的第n个元素X(n)通过一个权重因子m(k,n)与一个神经元K联系在一起。 神经元K的权重矢量是:mk=[m(k,1),…,m(k,p)]。输出Uk可通过一个简单的门槛阀值函数或更复杂函数的“启动系数”ψ(·)来传递。在神经元K启动函数的输出是Yk=ψ(uk)。使用了多层(LVQ)来进行模式识别。令X=X(t)为LVQ训练阶段t的输入信号列向量,这里X∈Rn。假设有K个神经元以权重矢量{mi(t),i=1,2,…,K-1,K}与输入模式矢量相连,这里mi(t)=[m(i,1),…,m(i,n)]T。LVQ的结构见图1。输入模式矢量X(t)和神经元mi(t)间的最近距离是以mc(t)表示的最佳匹配神经元。因此在k个神经元中,只有神经元mc(t)对输入信号X(t)作出响应,竞争学习的输出矢量是B。确定最匹配神经元的一种简单方法是点乘距离测量。X(t)和mi(t)的点乘距离测度是X(t)Tmc(t)。最匹配神经元mc(t)可以从下式中的神经元中选取最大点乘距离测度得到:对{i,2,…,K-1,K}输入信号列矢信号X(t)是在一定尺度下的小波变换系数的平方,在训练阶段,输入模式矢量的扰动类型是已知的。这些信息可以协调一个或一组神经元以便一次只有一个神经元对相似的输入模式矢量作出响应。在训练阶段完成后,神经元mi(t)的权重系数代表一类相似模式。在训练过程中,令X=X(t)为属于已知类Ct的输入矢量,LVQ网络的输出给出属于类Cr的最匹配神经元mc(t),并按下式进行更新:这里α是单调下降学习速度函数。当调整后的LVQ100正确识别输入信号,则认为训练阶段达到收敛。3证据累加和决策为了对扰动波形的类型做最后的决定,每一个神经网络的输出必须被合并,最简单的方法是使用投票制度。另一种方法是使用Dempster-Shafer证据理论来综合每个神经网络的输出。Dempster-Shafer证据理论提供了一种制定决策的方法,并给出决策制定的可信度。⊙为所有可能假设中互斥的完备有限组,n=|⊙|是⊙中的元素的总数。令μi,j代表支持假设i的证据,这里j表示μi,j的一个集合。令u({i})为代表确切表示支持i的累加证据,定义如下:安防之家专注于各种家居的安防,监控,防盗,安防监控,安防器材,安防设备的新闻资讯和O2O电商导购服务,敬请登陆安防之家:http://anfang.jc68.com/
小程序码
 
打赏
 
更多>文章标签:安防之家
更多>同类安防监控资讯
0相关评论

推荐图文更多...
点击排行更多...
安防监控商机更多...
安防监控圈更多...
最新视频更多...
推荐产品更多...
天花之家 | 木门之家 | 灯具之家 | 铁艺之家 | 幕墙之家 | 五金头条 | 楼梯头条 | 墙纸头条 | 壁纸头条 | 玻璃头条 | 老姚之家 | 灯饰之家 | 电气之家 | 全景头条 | 陶瓷之家 | 照明之家 | 防水之家 | 防盗之家 | 博一建材 | 卫浴之家 | 区快洞察 | 潜江建材 | 仙桃建材 | 恩施建材 | 随州建材 | 咸宁建材 | 黄冈建材 | 荆州建材 | 孝感建材 | 荆门建材 | 鄂州建材 | 襄樊建材 | 宜昌建材 | 十堰建材 | 黄石建材 | 长沙建材 | 湘西建材 | 娄底建材 | 怀化建材 | 永州建材 | 郴州建材 |
建材 | 720全景 | 企业之家 | 移动社区 | 关于我们  |  联系方式  |  使用协议  |  版权隐私  |  网站地图 | 排名推广 | 广告服务 | 积分换礼 | RSS订阅 | sitemap | 粤ICP备14017808号
(c)2015-2017 BO-YI.COM SYSTEM All Rights Reserved
Powered by 安防之家