安防之家讯:1 引言
电抗器按其特性可分为固定电抗器和可变电抗器。随着电力系统的发展,在很多场合都希望电抗器的电抗值能够实时调节。
可变电抗器经历了从机械式到电磁式,再到电力电子式的发展过程。机械式可调电抗器结构简单,线性度好,但不能实现电感的平滑调节,目前应用较少。电磁式可变电抗器通过改变铁心的磁阻来改变电感。磁阻大,则电感小;反之,磁阻小,则电感大。电磁式可变电抗器制造工艺简单,成本较低,在限制过电压、补偿无功功率等方面应用潜力大。其主要缺点是响应时间长,振动和噪声较大。电力电子电抗器是近年来研究和开发出来的一种新型可变电抗器,它采用电磁技术、电力电子技术、控制技术、计算机技术等,可实现阻抗值的连续无级可调。典型代表有晶闸管式电抗器、IGBT式电抗器。
这里主要研究晶闸管式电力电子电抗器,它结合了传统机械式电抗器和电磁式电抗器的优点,对传统电抗器进行改进,可实现电抗值的连续无级可调,且高次谐波较小。
2 电力电子电抗器结构
传统的机械式电抗器结构如图1所示。采用调节分接头式的方式来改变电抗器的电感,仅能实现阻抗的有级变换。这里所述的电力电子电抗器将传统电抗器与电力电子技术相结合,其结构如图2所示。
图1 机械式可变电抗器结构框图
图2 电子电力电抗器结构框图
对比图1,2知,电力电子电抗器将传统电抗器的单边绕组结构设计成双边绕组结构,其初级绕组与负载、电网串接、次级绕组与电力电子阻抗变换器相接,通过阻抗变换控制器控制电力电子阻抗变换器的工作状态,调节电抗变换器次级绕组的电流与阻抗,改变电抗变换器初级绕组的电流和阻抗,实现电抗器的阻抗变换。
3 电力电子电抗器拓扑结构
电力电子电抗器是一种较典型的可变电抗器。三组两两反并联的晶闸管构成电力电子阻抗变换器,通过控制晶闸管的导通角就可控制电抗器的等效阻抗值。其拓扑结构如图3所示。其一相的等效电路模型如图4所示。
图3 三相电子电力电抗器拓扑结构
图4 电子电力电抗器等效电路模型
文献已经详细推导了电力电子电抗器的阻抗变换原理。晶闸管控制角α与电力电子电抗器次级绕组ax端等效阻抗之间的关系为:
当α=0°时,晶闸管全导通,电力电子电抗器次级绕组相当于短路,电流最大,初级绕组电流最大,此时电力电子电抗器初级绕组阻抗最小。
当α=180°时,晶闸管关断,电力电子电抗器二次绕组相当于开路,电流最小,初级绕组电流最小,此时电力电子电抗器初级绕组阻抗最大。
当α在0°~180°之间时,电力电子电抗器初级绕组阻抗介于最大值与最小值之间,且连续可调。
4 建模与阻抗变换分析
在Matlab/Simulink中,利用电气模块PSB对三相电力电子电抗器进行建模与阻抗变换分析。三相电力电子电抗器仿真模型包括:三相电源模块、三相可变电抗器模块、三相晶闸管阻抗变换模块、脉冲触发器模块、负载模块等。
设置电源参数:电压峰值为,频率为50 Hz;电力电子电抗变换器功率:Pn=107VA,fn=50Hz;初级线圈参数:U1=104V,R1=2 mΩ,L1=0.05H;次级线圈参数:U2=25×105V,R2=2 mΩ,L2=0.05 H;磁阻Rm=200 Ω;励磁电感Lm=200 H。晶闸管参数使用默认值。设置Series RLC Branch的参数:R=100 Ω,L=0.05 H;C为inf,此时负载为感性负载。改变α得到仿真数据,根据此数据可描点绘出感性负载时α与电力电子电抗器的阻抗模值Z的关系图,如图5所示。
图5 晶闸管控制角与阻抗模值关系图
由图5可见,随着α的增大,电力电子电抗器初级绕组电压增大,电流减小,初级绕组阻抗增大,即电力电子电抗器阻抗随α的增大而增大。这与第3节中理论分析完全一致。
5 电力电子电抗器的应用及实验
5.1 电力电子电抗器式软起动器构建
软起动器结构图如图6所示。电机起动时,首先合上K1,电力电子电抗器初级绕组与电机、电网串接。根据阻抗变换原理,阻抗变换控制器通过改变电力电子阻抗变换器中晶闸管的触发角,来改变电力电子电抗器初级绕组的阻抗。随着该阻抗从大到小减小,加在电机上的电压由小逐渐增大,电机转速逐渐上升,当接近额定转速时,合上K2,断开K1,软起动结束,电机以额定转速运行。
图6 电子电力电抗器式软起动器结构图
5.2 软起动实验
实验对象为Y90S-4型三相绕线电机,其额定功率1.1 kW,定子Y型连接,额定电压380 V,额定电流2.7 A,频率50 Hz,额定转速1 390 r·min-1,功率因数为0.78。为验证电力电子电抗器在电机软起动中的应用效果,进行了电机全压直接起动和带电力电子电抗器软起动两种实验。
电机空载全压直接起动:直接合上K2,电机全压直接起动,起动电流波形如图7a所示。图中,电机全压直接起动时,起动过程很短,最大起动冲击电流为13.7 A,为额定电流的5.1倍;带电力电子电抗器软起动:合上K1,电机带电力电子电抗器软起动,起动电流波形如图7b所示。
图7 实验波形
电机带电力电子电抗器起动时,起动过程明显延长了,电机平滑地起动,最大起动冲击电流为7.1 A,为额定电流的2.6倍。对比图7a,b可见,与全压直接起动相比,带电力电子电抗器软起动能减小电机起动电流,达到保护电机及减小电机起动对电网影响的目的。
6 结论
电力电子电抗器的结构是对传统机械式可变电抗器结构的创新,这种结构具有高压与低压隔离、无源阻抗变换、对元器件的耐压要求低、阻抗无极调节等优点。已成功运用于高压电机软起动、静止无功补偿器、动态谐波抑制、风机水泵的调速等方面,具有广阔的应用价值。
安防之家专注于各种家居的安防,监控,防盗,安防监控,安防器材,安防设备的新闻资讯和O2O电商导购服务,敬请登陆安防之家:http://anfang.jc68.com/