大型炼钢电弧炉对电网及自身的影响和抑制方案翁利民,陈允平,舒立平(武汉大学电气工程学院,湖北省武汉市430072)详细分析了现代大型炼钢电弧炉对电网不利影响的4个方面:即电压波动、电压畸变、负序电压与电流、功率因数低,并结合实际从量的概念上认识其对自身在增加损耗、继电保护误动、增加网损、降低生产效益等方面的影响;介绍了抑制电弧炉的常规有效措施,得出了合理的结论。
关键词:电压闪变;电压波动;SVC;滤波器
1引言
现代大型超高功率炼钢电弧炉,由于其容量大,是用电大户,对电网的影响具有举足轻重的作用。它具有功率因数低,无功波动负荷大且急剧变动,产生有害的高次谐波电流,三相负荷严重不平衡产生负序电流等对电网不利的因素,使得电网电能质量恶化,危及发配电和大量用户,也影响电炉自身的产量、质量,使电耗、电极消耗增大,从而成为电网的主要公害之一。现在有关大型电炉对电网公害抑制的研究也正在深入开展,有必要对其不利影响和抑制对策作一概述性的分析。
2现代大型电炉对电网的影响
2.1引起电网电压急剧波动
大型电炉在打孔期和熔化期电弧长度急剧变化,引起无功负荷急剧波动,其工作短路功率为电炉变压器额定功率的两倍左右,其最大波动无功为电炉变压器额定功率的1.5倍左右(具体倍数取决于短网阻抗、电炉变压器阻抗、供电系统阻抗之和的大小,总阻抗大则工作短路倍数小,反之则大)。无功的急剧波动,引起电网电压的急剧波动,其波动频率一般为1~15Hz,使灯光和电视机屏幕产生闪烁,使人视觉疲劳而感到烦躁,此外还影响到晶闸管设备和精密仪表等的稳定运行,甚至产生质量事故。国标GB12326-2000《电能质量电压允许波动和闪变》规定了电力系统公共供电点各级电压等级的电压波动和闪变允许值。
2.2使电网电压波形产生畸变
电炉在熔化和打孔期,电弧电流是不规则的,且急剧变化,其电流波形不是正弦波,可分解为2次和2次以上的各次谐波电流,主要为2~7次,其中2次和3次最大,其平均值可达基波分量的5~10,最大可达15~30;4~7次平均值为2~6,最大值可达6~15。而电网中的铁磁元件也产生高次谐波,以3次和5次谐波电流较大,其中3次分量最大,而电炉刚好也是3次谐波电流很大,这对电网是极为不利的。谐波电流流入电网,使其电压波形发生畸变,引起电气设备发热、振动,增加损耗,干扰通信,使电力电缆局部放电绝缘损坏,电容器过载损坏等,国家标准GB/T14549-1993《电能质量公用电网谐波》规定了电压波形畸变率限值。
2.3使电网电压产生负序分量
电炉在熔化期,特别是打孔期,各相电弧电压是独立变化的,三相电弧各自发生急剧无规则变化,故其三相电流是不对称的。在正常生产情况下,产生的负序电流约为电炉变压器额定电流的25左右;在不正常情况下,如一相断弧时,可达56左右,如两相短路的同时,第三相又断弧,此时可达86左右。负序电流流入电网,使电网电压产生负序分量,影响发电机和用电设备使用效果,严重时可能造成损坏,还会使继电保护误动作,其严重程度一般用不平衡度(即负序电压与正序电压分量之比的百分数)表示,国标GB/T15543-1995《电能质量三相电压允许不平衡度》对于对称三相电网规定:负序电压不大于2,短时不超过4。一般来讲,在电网公共连接点上的短路容量为电炉变压器额定容量的30~40倍以上时,电网是允许的,否则应采取使三相达到平衡对称的补偿措施。
2.4引起电网电压水平降低
电炉在熔化期功率因数低于0.7,在发生工作短路时甚至低到0.1,在精炼期大型电炉功率因数也不高,一般为0.8左右。由于功率因数低,感性无功功率大,从而引起电压水平降低,影响用电设备出力,增加电能损耗,按供用电规则的规定,必须采用无功补偿措施在高峰负荷时把功率因数提高到0.9以上,但又不得超前。
上述电炉对电网影响的四个方面,有时是单独作用的,有时是综合的。
3大型电弧炉对自身及电气设备的影响
3.1对接在电炉供电电源电压等级上的小型发电机的影响[1]
以具有代表性和典型意义的某钢厂超高功率电炉为例。该电炉是由一座220/110kV变电站的110kV电压供电,在110kV系统中接有某一小电厂,在电厂中装有3台1500kW水轮发电机。在电炉进行正常生产时,电厂发电机出现频繁振动,每次振动连续时间短的几十秒,长的达几分钟,一天振动最多达20多次。作发电运行时(惯性大)振动小,作调相运行时(惯性小)振动大。在振动时发电机定子三相电流幅值不平衡且波动很大,同一相电流相对波动达20,三相电流之间相位偏差也在波动(约3°~4°),三相电流电压幅值包络线的波动频率为0.33~0.4Hz,电压和电流包络线正好反相位。机架上有一机械振动信号与电压波动频率相同(即共振)。上述情况说明发电机的低频振动是由电炉的无功波动、三相负荷不平衡、波形畸变综合作用形成的,而起主导作用的是无功波动。这是由于110kV系统该小电厂与电炉的电气距离最近,因此电炉对其有显著影响,不仅引起发电机振动,而且三相负荷不平衡还引起转子轴系产生曲扭,对轴产生不利影响,谐波电流使转子绕组铁心产生附加损耗,引起局部过热。
3.2对负序继电保护的影响
该电炉投产后,SVC装置尚未投入运行,变电站110kV系统距离保护装置的负序继电保护部分产生误动作,不得已只能退出运行。
3.3功率因数低,降低输送功率,增加网损
电炉熔化期功率因数只有0.7,冶炼周期平均功率因数只有0.79。在熔化期如果功率因数提高到规定值0.9,则网络可多输送11.6MW有功功率。而功率因数为0.7,就相当于使网络降低了11.6MW的有功输送能力,按平均网损8计算,多送无功造成的网损为928kW,年电能损耗达372MWh,电费为81.6万元。
3.4影响冶炼质量和效益
电炉变压器的直接用电电压为35kV,在电炉熔化期、打孔期,当SVC未投入时,母线上的电压波动为8~14,取10计算,电炉出力降低19,即使取8计算,电炉出力也降低15.4,熔化时间就要延长,至少要降低8的产量。
电压波动再加上35kV母线上电压畸变率(3.3~5.9)的影响,炉况不稳定电极升降调节频繁,使电极消耗增加,电力单耗增加,影响电炉自身的电能质量,从而对冶炼质量不利,经济效益会降低。另外,电炉投入运行后,由于功率因数低,在SVC装置未投入前,每月罚款6万元,一年就达72万元。
4抑制途径
抑制大型电弧炉对电网及其自身的影响的途径有:①提高供电电源的电压等级,以提高与电网公共连接点的短路容量,使其对电网和自身的影响在允许范围内;②采用SVC装置,使其对电网和自身的影响在允许范围内。这两种途径相比,途径①是治标的办法,因为电炉对电网和自身的影响的各种量值并未消除,而是送到更高电压等级的电网去扩散,随着电炉不断建设发展,这些量值在电网中增加积累,泛滥成灾,将会达到电网不能接受的程度,反而增加了对广大用户的影响,因此,使用范围越来越小;而途径②是治本的办法,它使电炉对电网和自身的影响的各种量值大部分就地消除了,其应用前景广阔。
近年来发展起来的SVC装置是一种快速调节无功功率的装置,已成功地用于电力、冶金、采矿和电气化铁道等冲击性负荷的补偿上,它可使所需无功功率作随机调整,从而保持电弧炉等冲击性负荷连接点的系统电压水平的恒定[2]。即
Qi=QD QL-QC(1)
式中Qi为系统公共连接点的无功功率;QD为负荷所需的无功功率;QL为可调(可控)电抗器吸收的无功功率;QC为电容器补偿装置发出的无功功率,单位均为kvar。
当负荷产生冲击无功DQD时,将引起
其中DQC=0,欲保持Qi不变,即DQi=0,则DQD=-DQL,即SVC装置中感性无功功率随冲击负荷无功功率作随机调整,此时电压水平能保持恒定不变。
SVC由可控支路和固定(或可变)电容器支路并联而成,主要有四种型式,其基本结[1][2]下一页